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ABSTRACT. The present  state of development of the methods used 
f o r  var ious t e s t s  f o r  t e n s i l e  and creep s t u d i e s  at high tempera- 
t u r e s  i n  vacuum, charac te r ized  by research  devices and procedures 
which o f t en  permit no d i r e c t  comparison'of the  research  results. .  
For i ts  evaluat ion the  sources  of e r r o r  of the  method must be 
known. The research  condi t ions of vacuum, power i n i t i a t i o n ,  ex- 
pansion measurements, expansion ra te ,  temperature, and temperature 
d i s t r i b u t i o n  were s tudied.  The pressure i n  the  vacuum chamber 
and the  l eak  rate should be considerable f o r  the  research  materials. 
Inhomogeneous deformations d i s t r i b u t e d  over t he  sample c ross  
sec t ion  and measurement length ,  r e l a t i v e  motions between sample and 
t e s t  machine or expansion measurement device,  and temperature ex- 
pansion could not  be de tec ted  ind iv idua l ly  and were eliminated. 
The power i n i t i a t i o n  i n  the  vacuum chamber and the sample must be 
followed s o  t h a t  add i t iona l  stresses remain as low as possible .  
The expansion r a t e  of t he  measurement length  w a s  s t rong ly  a f f ec t ed  
by the  shape of the  t e s t  device a t  constant escape rate of t he  
t raverse .  The dr ive must therefore  be s o  q e r a t e d  t h a t  t he  ex- 
pansion rate i n  the  measurement gap remains constant.  An 
accurate  expansion measurement is necessary during the  t e n s i l e  
s t u d i e s  for t he  expansion r a t e  control.  E l a s t i c i t y  and expansion 
l i m i t s  were determined higher  a t  constant expansion rate a t  room 
temperature than a t  constant  stress rate of t he  t raverse .  The e f f e c t  
of the  temperature devia t ions  i n  the  measurement length  on the  material 
c h a r a c t e r i s t i c s  w a s  described. For evalua t ion  of the measurement 
methods, t e s t  norms, and materials and for the  measurement of con- 
s t i t u e n t s  i t  is  necessary t o  know how r e l i a b l e  the r e s i s t ance  
c h a r a c t e r i s t i c s  a re .  The r e l a t i v e  r e s u l t i n g  stress e r r o r  i s  given 
as a funct ion of t he  a f f e c t i n g  parameters (expansion, temperature, '  
expansion r a t e )  and dimensionless e r r o r  moduli. P rope r t i e s  deter-  
mined i n  t e n s i l e  and creep s t u d i e s  of var ious  work materials are 
repor  t e  d. 4415 

S t a t e  of Technology 

Experience gained i n  t e n s i l e  and creep t e s t i n g  i n  a i r  up t o  1000°C is very L992 
extensive.  Despite t h i s  f a c t ,  thorough inves t iga t ion  r evea l s  t h a t  var ious 

f a c t o r s  have not  been adFquately considered i n  the  performance of the  t es t s  

and t h a t  these are not  gene ra l ly  cont ro l led ;  l e t  u s  mention, e.g., t he  e f f e c t  

. - /99S 

* Numbers i n  the  margin ind ica t e  paginat ion of t he  fore ign  text.  
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of the deformation of t he  t e s t i n g  machine and t h e  ends of the  specimen on ten- 

s i l e  values  and problems of the accuracy of temperature and s t r a i n  measurements 

i n  creep t e s t i n g  1-8 . A t  temperatures above approximately 1000°C and i n  vacuo, 

t e s t i n g  becomes more d i f f i c u l t  [g? 10 1. 

In  recent  years ,  g r e a t  e f f o r t s  have been expended i n  order  t o  improve and 

t o  develop the  technology of high-temperature t e s t ing .  Upon recommendation of 

the S t ruc tu res  and Materials Panel of AGARD (Advisory Group for Aerospace 

Research and Development, NATO), the behavior of TZM molybdenum w a s  determined 

i n  t e n s i l e  t e s t i n g  t o  18oo0c, i n  comparative t e s t i n g  by 11 labora tor ies .  

g r e a t  devia t ions  i n  t e s t  r e s u l t s  of the  d i f f e r e n t  l abora to r i e s ,  made i t  neces- 

s a r y  t o  i nves t iga t e  the  e f f e c t  of the ind iv idua l  f a c t o r s  c lose r  i n  add i t iona l  

work [UJ. Special  emphasis w a s  placed on the  following t e s t i n g  condi t ions:  

vacuum, specimen configurat ion,  s t r a i n  measurement, s t r a i n  rate and temperature. 

Additional aggravating condi t ions occur i n  creep t e s t ing .  

The 

In  the  following, c e r t a i n  a spec t s  of  t h e  conduct of such experiments a t  

e leva ted  temperatures w i l l  be discussed. I n  addi t ion ,  t he  e f f e c t  of measuring 

and con t ro l  e r r o r s  on property values  w i l l  be t rea ted .  

Experimental Conditions 

Vacuum 

High-melting metals and t h e i r  a l l o y s  are subjec t  t o  very vigorous oxidat ion 

i n  air a t  temperatures i n  excess of 450 t o  650"~ s o  t h a t  tests must be performed 

i n  a n e u t r a l  atmosphere or preferab ly  i n  a high vacuum. 

The q u a l i t y  of t he  vacuum cannot be charac te r ized  adequately by c i t i n g  the, 

pressure,  because the  l eak  rate a l s o  a f f e c t s  the contamination of the mater ia ls .  

The real  and apparent components of t he  l eak  rate should be known, i n  order  t o  

d i s t ingu i sh  between a i r  coming i n  because of inadequate sea l ing  and the  gas 

y i e l d  due t o  the  degassing of container  w a l l s ,  the  r e c i r c u l a t i o n  of propel lan ts ,  

e t c .  I f  such components are d i f f i c u l t  t o  i d e n t i f y ,  the  recording o f  the  pressure- 

time behavior i n  the  vacuum chamber a f t e r  i nac t iva t ion  of the  pump is  recommended. 

The necessary vacuum condi t ions must be e s t ab l i shed  i n  each case,  because 

they are governed by the material (vapor pressure of a l loy ing  components and 
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oxides,  i n t e r n a l  oxidat ion,  e t c . ) ,  the  configurat ion of spec.imens and t h e i r  

arrangement i n  the  furnace,  the temperature and durat ion of' t he  tes t .  A t  a 

t e s t i n g  temperature of l O 9 5 " C  and a t e s t  time of 1522 hours,  e.g. the oxygen 

absorpt ion of t he  FS 85 Nb a l l o y  (28 T a ,  9.5 W, 0.8 Z r ,  0.018 02? by weight %) 

i n  a vacuum of 2 x t o r r  ( s t a r t )  and 4 x t o r r  (end) amounted t o  

62 ppm [121. 
-6 approximately 10 a t  2300°C Cl3l. 

On the  o the r  hand, Nb is extens ive ly  degassed i n  a vacuum of 

Introduct ion of Forces i n  the Vacuum Chamber and the Specimen 

The problem of introducing the  force  i n  the  vacuum'chamber may be circum- 

vented by placing the e n t i r e  t e s t i n g  machine i n  vacuum. This so lu t ion  i s  re- 

commended mainly f o r  creep t e s t i n g  of long durat ion because the  t e s t i n g  machine 

is  r e l a t i v e l y  small, may be 

s t r e s sed  by weights. 

under very high vacuum U21. 

b u i l t  without l oca t ions  t o  be lub r i ca t ed  and 

NASA performs creep tests in s u i t a b l e  t e s t  i n s t a l l a t i o n s  

1 - t e n s i l e  t e s t  specimen 
2 - r e s i s  tnnce heat ing elements 

(tungsten web, 200 mm long, 
50 mm i n  diameter) 

3'- pro tec t ive  shee t s  aga ins t  
r ad ia t ion  

4 - cooling jacke t  
5 - water-cooled power i n l e t s  
6 - drawbars 
7 - threaded connection 
8 - water-cooled drawbars 
9 - quartz  g l a s s  window f o r  o p t i c a l  

temperature measurements 
10 - metal bellows 
11 - s t r a i n  measuring instrument 
12 - cooling c o i l s  
13 - f lange of d i f fus ion  pump 

Figure 1. Marshall furnace (diagram). 
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I n  t e n s i l e  t e s t i n g ,  the  force  is  introduced i n  the evacuated furnace 

genera l ly  e i t h e r  with the a i d  of a me ta l l i c  bellows o r  a s t u f f i n g  box. 

l a t t e r  case, the s t r a i n  gage f o r  force  measurements must a l s o  be mounted i n  

the vacuum chamber. This  introduces add i t iona l  po ten t i a l  e r r o r s  .in force  ' 

In  the 

measurement. Intensive cool ing of drawbars i n  the  furnace space i s  required - /loo: 
s o  t h a t  t he  temperature d i s t r i b u t i o n  along the  specimen is  a f f ec t ed  i n  an un- 

favorable manner. 

the force w a s  introduced preferab ly  by way of bellows, as i n  the  Marshall 

For t h i s  r e a s o n , ' i n  the a u t h o r ' s  experimental apparatus ,  

high-temperature furnace. The furnace is  shown i n  Figure 1 and described i n  

de t a i l  i n  [lo I. I n  force  measurements, depending on the  atmospheric pressure,  

vacuum and spr ing  fo rces  must be considered. A similar furnace i n s t a l l a t i o n  

proved t o  be s u i t a b l e  f o r  creep t e s t i n g  [g]. A disadvantage of t he  bellows 

design is  the  f a c t  t h a t  according t o  the  center ing of the  furnace i n  the  t e s t  

machine, d i f f e r e n t  t ransverse  fo rces  may a c t  on the  drawbars; they are d i f f i -  

c u l t  t o  con t ro l ,  the  d i f f i c u l t y  being'enhanced by the  va r i a t ion  of the  center- 

ing  with temperature. 

Measures t o  insure  centered force  in t roduct ion  i n  t h e  specimen and the e f f e c t s  

of add i t iona l  stresses on the  configurat ion of the  s t r e s s - s t r a i n  diagram were 

discussed i n  d e t a i l  i n  the  l i t e r a t u r e  [ 6 ,  9 ,  20, 14, 151. ?he e f f ec t iveness  of 

b a l l  and socket and p ivot  j o i n t s  a t  t h e  ends of t he  drawbars i s  g r e a t l y , r e -  

s t r i c t e d  by the self- locking of the  bearings.  The l a t t e r  occurs when the  l i n e  

of ac t ion  of the  force  contac ts  the f r i c t i o n  c i r c l e  with a r ad ius  of p r  ( p  - 
coe f f i c i en t  of f r i c t i o n ,  r - r ad ius  of the b a l l  or pivot) .  With p w  0.1 and 

r w 50 mm, the r a d i u s  of the  f r i c t i o n  c i r c l e  is of an order  of magnitude of 

5 mm. 

An estimate of the bending momentum d i s t r i b u t i o n  i n  the  drawbars i s  given 

i n  Figure 2 f o r  c e r t a i n  types of loading and bearing. Even i n  the  case of 

d i r e c t  weight loading by 'way of a " f r i c t i o n l e s s "  j o i n t ,  e.g. i n  creep machines, 

l a rge  bending momentums may occur i n  the specimen, i f  the  upper end of the d r a w -  

bar  is  supported i n  a socket (Figure 2a). If af ter  i d e a l  alignment of the  

drawbars and the  specimen i n  the  j o i n t s  self- locking occurs a t  the  ends of 

the drawbars, bending momentum behavior i n  accordance with Figure 2b w i l l  take 

place,  i f  the  rod  is  f u r t h e r  s t ra ined .  

. 

With excent r ic  t e n s i l e  specimens having LlOO 
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Figure 2. Estimation of bending momentum d i s t r i b u t i o n  i n  the  drawbars. 

an e x c e n t r i c i t y  of 7 mm, a change i n  s igns  of the  bending s t r e s s  w a s  observed 

i n  the measured dis tance i f  the  f r i c t i o n a l  moments a t  the end of the drawbars 

were s u f f i c i e n t l y  l a rge  C1-41. 
machine and the furnace a r e  obviously of advantage. In  the case of an i d e a l  

geometry of the specimen and the  drawbars, f r i c t i o n l e s s  support of the ends, 

as approximately a t t a i n e d  with kni fe  edge bear ings,  for example, is  b e t t e r ,  

however. The bending moment is then zero over the e n t i r e  drawbar system; dso, 

changes i n  the  e x c e n t r i c i t y  of the machine frame is compensated f o r  during the 

t e s t ,  .involving, however, simultaneous motion of the specime- with respec t  t o  

the machine. Within the  drawbar system, however, a c e r t a i n  e x c e n t r i c i t y  always 

e x i s t s ,  e s p e c i a l l y  i f  the  specimen is connected with p ins  with the  clamping 

f i x t u r e s ,  s o  t h a t  a bending moment behavior i n  accordance with Figure 2c must 

be expected. 

s t r e s s e s ,  for f la t  and round specimens, as a funct ion of excent r ic i ty .  

Rigidly supported drawbars, wel l  centered i n  the 

Figure 3 is a p l o t  of the r e l a t i o n s h i p  of bending t o  t e n s i l e  

Specimen Configuration and S t r a i n  Measurements 

In  high-temperature t e s t i n g  i n  vacuum the  known methods f o r  the  measure- 

ment of s t r a i n  independently of extraneous s t r e s s e s  and the r e l a t i v e  motion of 

the specimen with respec t  t o  the t e s t  machine and the furnace,  can be appl ied 

i n  pa r t  only. The physical measurement of s t r a i n  required is  not  possible  a t  

the present  time and the  reference point  of the measurement is  n o t  loca ted  on 

the specimen. A change i n  e x c e n t r i c i t y  within the machine frame during, the 

loading of the specimen and the r e v e r s a l  i n  d i r e c t i o n  of the  drawbar is 
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therefore  detr imental ,  a p a r t  from 

extraneous s t r e s ses .  The accuracy 

of the  determination of the e l a s t i c  

modulus, the e l a s t i c  l i m i t  and the 

y i e l d  point and of the h y s t e r e s i s  

loop is s t rongly  a f f e c t e d  by such 

processes. Testing of mechanical 

t e s t i n g  machine prototypes showed 

a displacement of the  drawbar per- 

pendicular ly  t o  the t e n s i l e  d i r e c t i o n  

- /lo0 

I 405 a9 by a dis tance up t o  0.5 mm. I n  a 
e x c e n t r i c i t y  t e n s i l e  machine of s p e c i a l  design In mm - 

t h i s  displacement w a s  reduced t o  
Figure 3.  Superposed bending s t r e s s  about 1 0 N m .  In  add i t ion ,  a pre- with excent r ic  t e n s i l e  force.  

c i s i o n  s t r a i n  gage i s  being de- 

veloped, which is  placed d i r e c t l y  on the measured length of the specimen and 

thus moves with the specimen i n  the manner of the room temperature tes t  in s t ru -  

ments. I n i t i a l l y ,  t e s t s  on p r o t e c t i v e l y  coated specimens i n  a i r  with induction 

heat ing t o  20OO0C a r e  scheduled, l a t e r ,  t e s t s  i n  vacuum a r e  t o  follow. 

A and B 
C and D 

E: 

F 

I and I1 

universa l  spr ing  j o i n t s  
spr ing  j o i n t s  
d i f f e r e n t i a l  transformer 

f o r  precis ion skr t l in  
gage 

d i f f e r e n t i a l  t r a n s f  orger 
for coarse s t r a i n  gage 

l e v e r  
d i r e c t i o n  of  p u l l  

measuring bar  

Figure 4. Diagram of s t r a i n  gage i n s t a l l a t i o n .  
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Since high-temperature materials f requent ly  are d i f f i c u l t  t o  work, the 

specimen configurat ion must be espec ia l ly . su i tab1e  with considerat ion of the 

s t r a i n  gage type t o  be used. Sui table  specimen shapes a r e  given i n  [ g ,  10, 151. 
With the present ly  known s t r a i n  gages the  fas ten ing  of measuring rails with 

kni fe  edges must be abandoned a t  very high temperatures, due t o  the  l a c k  of 

su i t ab le  edge mater ia ls .  The specimens thus a r e  f requent ly  made with measuring 
- shoulders. These, however, are d i f f i c u l t  t o  produce on f l a t  specimens, they 

i n t e r f e r e  with the s t r e s s  and deformation f i e l d  of  the gage length  and thus 

a f f e c t  the behavior of the  mater ia l ,  as discussed i n  more d e t a i l  i n  ~161; i n  '/ZOO1 - 
the case of t h i n  shee t s  therefore  spot-welded s t r i p  specimens a r e  of ten  pre- 

fe r red .  In  the a u t h o r ' s  i n v e s t i g a t i o n ,  the specimen configurat ion shown i n  

Figure 4 proved t o  be of advantage. 

s t r a i n  gage arrangement se l ec t ed ;  i t  a l s o  proved t o  be su i t ab le  f o r  round spe- 

cimens and compression t e s t i n g  with prec is ion  s t r a i n  gages. 

The f igu re  d isp lays  i n  diagram form the 

The immersion core 

of the d i f f e r e n t i a l  transformer i s  i n  the  vacuum, the c o i l  i n  the  air. The 

e r r o r  caused by the f a c t  t h a t  t he  c ros s  s e c t i o n  is n o t , t h e  same over the  e n t i r e  

gage length  can be corrected through s u i t a b l e  s t r a i n  r e l a t i o n s h i p s  with ade- 

quate accuracy [lo 1. 

Commercially a v a i l a b l e  s t r a i n  gages with mechanical s t r a i n  sensing a r e  

equipped with other  sensing l e v e r s  which a l s o  compensate f o r  $ h e m a l  expansion 

and l inkage deformation i n  the t e n s i l e  d i r ec t ion ,  but  do not  have the simple 

construct ion and suspension of the a u t h o r ' s  apparatus. 

housing is common t o  a l l  of the  gages, so  t h a t  the alignment of the  d r a w  

l inkage must be sa t i s f ac to ry .  The s e t u p  is centered i f  t he  drawing l inkage 

does not s h i f t  under load  t ransverse ly  t o  the  t e n s i l e  d i rec t ion .  This is 

v e r i f i e d  e a s i l y  with d i a l  ind ica tors .  

'Mounting on the furnace 

Optical  methods of precis ion s t r a i n  gage measurements with continuous 

recording a r e  not  s u f f i c i e n t l y  t e s t e d  a t  high temperatures and a r e  r a t h e r  ex- 

pensive. 

S t r a i n  Rate 

Tkie v a r i a t i o n  of the  stress CT over the s t r e i n  e =A L (4L elongation 
o/Lo 0 

of the gage length  Lo) is, as is known, a funct ion of the s t r a i n  r a t e  5 .  
t h i s  reason,  the t e s t i n g  machines are b u i l t  r i g i d l y  i n  the  t e n s i l e  d i r e c t i o n  

For 

7 



and u s u a l l y  designed t o  t h a t  t he  p u l l  r a t e  of t he  drawbar 8 is  constant  i n  good 

approximation. The loading of t he  specimen causes the  deformation of t he  t e s t  

l eng th  Lv with the gage l eng th  Lo, the  specimen ends including displacements with 

r e spec t  t o  the clamping p a r t s ,  and the  t e s t  machine i t s e l f .  

Thus a t  constant  drawing rates & the  s t r a i n  rate i n  the  range of e l a s t i c  

deformation of the  gage l eng th  ( b / 6 E :  = E ,  modulus of e l a s t i c i t y (  is  i n  p a r t  

s u b s t a n t i a l l y  l e s s  (by about an order of magnitude) than a f t e r  l a r g e r  p l a s t i c  

deformations (8a/6~: M 0 ) .  

(608, > A L o )  is  

approximately equal  t o  G. 
with constant l oads  permanent deformation of t he  t e s t i n g  machine ( s e t t l i n g ,  

alignment),  motion between the  specimen and the  clamping f i x t u r e  and p l a s t i c  

deformation, including creep i n  the  ends of t he  specimen, occur. After  passing 

through the  maximum load point  ( b / 6 E :  

posed on t h e  displacement of the  drawbar s o  t h a t  s t r a i n  rates can increase sub- 

s t a n t i a l l y .  I n  Figure 5 the  equivalent  c i r c u i t  diagram of a t e n s i l e  t e s t i n g  

machine wi th  a specimen is shown. 

drawbar, t he  configurat ion of the  s t r e s s - s t r a i n  diagram becomes dependent - 
upon the  onset  of p l a s t i c  deformation - on the  r e s i l i e n c y  ol t he  t e s t  machine 

and the  ends of t h e  specimens [l-5, 7, 101. 

A t  t h e  lower y i e l d  point  and maximum loads  

= 0 )  t he  average s t r a i n  rate of the  gage l eng th  AL (AL 

and s is  not a t t a i n e d ,  because even 
V V 

Equal i ty  of AL 
V 

O ) ,  r e c o i l  of t he  t e s t  machine is  super'- 

Even i n  the  case of constant draw rate of t h e  /1GC - 

Constant s t r a i n  rates can be 

a t t a i n e d  only i f  t he  s t r a i n  - both i n  p rec i s ion  and coarse measurements - is 

measured d i r e c t l y  on the  specimen and the  d r ive  of t he  t e s t i n g  machine i s  con- 

t r o l l e d  by t h i s  s i g n a l ,  s o  t h a t  dL 

t o  which the  draw rate of the  drawbar must be va r i ed  i n  the  case of constant 

s t r a i n  rates is  shown i n  Figure 6. 
s o  t h a t  a l i n e a r  s t ra in- t ime dependence corregponding t o  E: = 0.5% min w a s  ob- 

tained. Since the  mechanical p r o p e r t i e s  of high-melting metals,  among o the r s ,  

and i acquire  the  proper value. The ex ten t  
0 

The d r ive  i n  t h i s  case w a s  con t ro l l ed  manually 
-1 

depend s t r o n g l y  on the s t r a i n  rate - Figure 7 - high-temperature t e n s i l e  t es t s  

r equ i r e  such a machine i f  the  t e s t  r e s u l t s  of d i f f e r e n t  l a b o r a t o r i e s  are t o  /loor 
be comparable d i r e c t l y  t o  each other.  For t h i s  reason, i n  cooperation with a 

manufacturer of t e s t i n g  machines, an electromechanical dr ive con t ro l  w a s  de- 

veloped which permits,  even with a "soft"  t e s t i n g  apparatus genera l ly  present a t  

e levated temperatures and with s t rong  v a r i a t i o n s  o f  the  tangent modulus 6q66G i n  t he  

t r a n s i t i o n  from t h e  e l a s t i c  t o  the  e l a s t i c - p l a s t i c  deformation range, t o  maintain 

8 



, 

s e t t l i n g  

permane t . def orma- 
t i o n  ?without 0 1 @ 
creep component \Li; e l a s t i c  deformation. 

per  mane n t de forma- 
t i o n  (without 
creep component) 

e l a s t i c  deformation 

deformation by creep 
t e s t i n g  machine 
(machine and ends of 

specimen) 

deformation by creep 

gage l eng th  

Figure 5. Equivalent c i r c u i t  diagram of a t e n s i l e  t e s t i n g  machine 
with specimen. 

TZM molybdenum 
I s t r a i n  rate ?.5%/min. 

; ,' time - 
Figure 6. Time dependence of the drawbar displacement a t  constant  

s t r a i n  rates. 
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Figure 7. Effect '  of s t r a i n  r a t e  on t e n s i l e  s t rength.  

a constant s t r a i n  r a t e  E: with g rea t  accuracy automatical ly ,  i f  no pronounced y i e l d  

point  is present.  Fo1loh;ring prec is ion  s t r a i n  measurements, :he experiment can 

be continued d i r e c t l y  t o  f r a c t u r e ,  s o  t h a t  the  elongation a t  f r a c t u r e  can be 

determined independently of the deformation of the  t e s t i n g  machine. 

For unalloyed t i tanium (3-mm shee t ,  hardness HV 10 = 195 kp mm-2), the 

e l a s t i c  l i m i t s  and y i e l d  poin ts  determined a t  constant s t r a i n  r a t e s  and drawbar 

v e l o c i t i e s ,  a r e  presented i n  Figure 8. The e l a s t i c  l i m i t  is higher by 

18% , t h e 0 0 . 2 - l i m i t  higher by 8% at  E: = constant than with a constant drawing 

r a t e  of the drawbar. I n  the case of high-melting metals,  g r e a t e r  deviat ions 

must be expected a t  e levated temperatures,  Figure 9a and gb. Precise  s t r a i n  

measurement is a l s o  necessary with respec t  t o  maintenance of s t r a i n  r a t e  

constants.  

Te mDe r a tu re  

Advantages and disadvantages of the d i f f e r e n t  heat ing methods ( d i r e c t  and 

i n d i r e c t  induct ion o r  r e s i s t a n c e  heat ing,  o p t i c a l  beam concentrat ion) ,  together  

10 



permanent s t r a i n  01. - 
Figure 8. R a t i o  of y i e l d  poin ts  determined a t  a constant  s t r a i n  rate 

and a t  constant draw ve loc i ty  of the: drawbar. 

0~ = cons tan t ,  determined a t  i: = 0.12% min-1 

cx = constant ,  determined a t  2/Lv = 0.12% min-l, Lv = gage length  

Test ing machine: Testatron,  Wolpert. 

with temperature measurement problems are described i n  d e t a i l  i n  C8, 91. 
only the temperature deviat ion within the s t r a i n  gage s h a l l  be t rea ted .  

Here, - /lo0 

I n  order  t o  a t t a i n  s u f f i c i e n t  accuracy of s t r a i n  measurements, maximum 

s t r a i n  gage lengths  are frequencly recommended for high-temsxature  experiments. 

The a u t h o r ' s  inveqt iga t ion  showed, however, t h a t  with a r a t i o  of the gage length 

t o  the hea t ing  g r i d  of 1:8, temperature devia t ions  of 

t o  maintain;  it became necessary t o  i n s t a l  thermal b a f f l e  p l a t e s ,  l o c a l l y  vary 

the emission system of the  drawbar assembly and the thermal r e s i s t ance  of a 

draw rod increased by reducing i ts  c ross  sec t ion .  For the  same temperature de- 

v i a t i o n ,  s u b s t a n t i a l l y  more extensive measures were requi red  with a gage length 

of 50 mm. I n  add i t ion ,  the  va r i a t ion  of the temperature p r o f i l e  during the 

24°C are i n  pa r t  d i f f i c u l t  

. -  /lo0 

t e s t  must be observed, because with increas ing  s t r a i n s  t h e  d i f fe rences  i n  tem- 

perature  r i s e  appreciably.  Therefore the  temperature d i s t r i b u t i o n  over the 

gage length  during duc t i l e  behavior should be v e r i f i e d  immediately preceding 

f r ac tu re  a l so .  

Inhomogeneous temperature d i s t r i b u t i o n  over the gage length  renders  the 

ind ica t ion  of the t e s t  temperature uncer ta in  and l e a d s  t o  l o c a l l y  d i f f e r e n t  

s t r a i n  rates so  t h a t  y i e l d  po in t s ,  t e n s i l e  s t r eng ths ,  uniform elongat ions and 
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material : TZM 
test  temperature 1450°C 

2 1 2 -  
s 

\3 

Figure 9a. Tensi le  and Eelaxation t e s t s  on TZM molybdenum at  
1450°C. 

maeirial : TZM 
t e s t  ternpe2atnre 1800"~ 

Figure gb. Tensi le  and r e l a x a t i o n  tes t s  on TZM molybdenum at 
1800~~. 

elongat ions at f r a c t u r e  can be s t r o n g l y  affected.  Tensile p rope r t i e s  r i s e  o r  

decrease i n  accordance with t h e i r  dependence on temperature and s t r a i n  rate and 

l o c a l  temperature gradients .  The e f f e c t  of l o c a l  temperature g r a d i e n t s  w a s  

i nves t iga t ed  on f u l l y  annealed TZM molybdenum shee ts .  

pe ra tu re s  of 1450°C ( a r th ime t i c  mean of temperature a t ' t h e  ends and the  cen te r  

A t  i d e n t i c a l  mean tem- 

of spacimens) and increase i n  the  temperature deviat ion from +l.g"C t o  ?lO.7OC, 
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var ied  by approximately +6%, t e n s i l e  s t r eng th  by only approximately +2%, 

Uniform elongat ion declined 
O0.2 
and elongat ion a t  f r ac tu re  by approximately -6%. 
correspondingly s o  t h a t  at a constant nominal s t r a i n  ra te ,  t e n s i l e  s t r eng th  

w a s  determined a c t u a l l y  a t  a g r e a t e r  t r u e  s t r a i n  rate. 

1 Estimation of Error 

For t e n s i l e  and creep tes t s  the  accuracy of measurements of fo rce ,  length,  

time and temperature is  extens ive ly  def ined i n  the var ious s tandards (DIN, ASTM, 

B r i t i s h  Standards,  e t c . ) .  

depending on material behavior,  t o  the inaccuracy of the property t o  be deter-  

mined. The property e r r o r  r e s u l t i n g  is of i n t e r e s t  f o r  t he  evaluat ion of the 

material and should be known t o  the designer.  

Permissible e r r o r s  of these measured values  cont r ibu te ,  

Standard spec i f i ca t ions  of measuring accuracy are based on extensive ex- 

perience gained with conventional materials. In  the  standard t e s t i n g  of such 

mater ia l s  and o the r s  with similar p rope r t i e s ,  the r e s u l t i n g  e r r o r  'in property 

values  is  s l i g h t ,  i f  the e r r o r  i n  the  s t r a i n  rate due t o  the  deformation of the 

I 

t e s t i n g  equipment i s  negl ig ib le .  Fur t e s t i n g  a t  temperatures i n  excess of 

approximately 1000°C, c e r t a i n  s tandards do e x i s t  with respec t  t o  measuring 

accuracy, they cannot be s a t i s f i ed  i n  p a r t ,  and a l s o  agreements between t e s t i n g  

l abora to r i e s ,  such as the  AGARD recommendation contained i n  t i -  "Cooperative 

Program on Mechanical Test ing of Refractory Metals," which a r e  based on the 

e x i s t i n g  accuracy of the  t e s t  method. 

fore  the determination of the  p a r t i a l  e r r o r  r e s u l t i n g  from the inaccuracy o f  

measured values  is of considerable usefu lness ,  e spec ia l ly  i f  the r e s u l t s  o f  

d i f f e ren t  l a b o r a t o r i e s  a r e  t o  be compared and measuring methods evaluated and 

improved. Knowledge of e r r o r  sources is a l s o  required f o r  the  establishment of 

I n  high-temperature inves t iga t ions  there-  - /lo10 

new standard spec i f ica t ions .  

The problem of accuracy requirements t o  be e s t ab l i shed  f o r  values  obtained 

i n  t e n s i l e  and creep t e s t i n g  with equal r e s u l t a n t  e r r o r s  i n  the measured proper- 

t y  value i s  a l s o  of g r e a t  i n t e r e s t ;  e.g. i t  is possible  t o  co r rec t  i n  general  

the e r r o r  of s t r a i n  measurement c rea ted  by including the elongat ion of specimen 

shoulders i n  t e n s i l e  t e s t i n g ,  with s u f f i c i e n t  accuracy DO], while according t o  

~181 i n  creep t e s t i n g  an adequate accuracy of s t r a i n  measurement can be attained 

only including equal  cross sec t ions  i n  the gage length.  

1. Extensive discussion of e r r o r  sources  is  found i n  17 . 
13 



For these  reasons,  i n  the following the e f f e c t  of the  measured e r r o r  on 

the accuracy of mechanical property va lues  s h a l l  be invest igated.  

Fact or s 

The values  measured i n  t e n s i l e  t e s t i n g  are l eng ths ,  temperature,  and time. 

Since the determination of e longat ion a t  f r a c t u r e  and reduct ion of a rea  a t  

f r ac tu re  i s  based only on measurements a t  room temperature, the e r r o r  of these 

measurements w i l l  no t  be discussed i n  d e t a i l  a t  the present  time. The e r r o r  

of t e n s i l e  property measurements caused by the  inaccuracy of measured values  

l i s t e d  above, w i l l  be invest igated.  

Eq. I g ives  the  r e s u l t a n t  r e l a t i v e  e r r o r  of the  nominal stress 6a/a 
L 1 s  . 

as a funct ion of t he  r e l a t i v e  measuring e r r o r s  & e / € . ,  6T/T, 6€/c ( 8  - s t r a i n ,  

T - absolute  temperature, ‘ 8 -  s t r a i n  r a t e )  and of dimensionless material proper t ies .  

The f a c t o r s  

temperature 

aa/& aa/aT adad -&-l>lxl, and are designated i n  the following as the  i t r a i n ,  

and s t r a i n ‘  r a t e  error moduli. I6a,uI. is the r e l a t i v e  nominal stress 
e r r o r  due t o  inaccurate  force  measurement. P I  

In  the l i n e a r l y e ‘ l a s t i c  range the s t r e s s - s t r a i n  curve is 

By s impl i f i ca t ion  the  corresponding stress e r r o r  (Eq. I )  is taken as the 

e r r o r  of t he  y i e ld  points.  A t  the  highest  point  of the s t r e s s - s t r a i n  curve,  

= 0. The e r r o r  of s t r a i n  measurement thus  a f f e c t s  the inaccuracy of - /1m: lkz- I 
the t e n s i l e  s t r eng th  i n d i r e c t l y  only,  by way of the s t r a i n  rate,  as shown i n  

the following sect ion.  

A s  a r u l e ,  constant  s t r a i n  rates are des i red  i n  t e n s i l e  t e s t ing .  If the 

necessary cont ro l  of the  v e l o c i t y  of t he  drawbar is f r e e  of e r r o r  corresponding 

t o  the time-dependent s t r a i n  s i g n a l ,  t he  s t r a i n  rate e r r o r  depends only on the 

accuracy of s t r a i n  and time measurements. S l i g h t ,  short-time deviat ions from 

the required value of the s t r a i n  rate do not  a f f e c t  the  configurat ion of the 
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fo rce - s t r a in  diagram f u l l y  because of the response time of the system and may 

of ten  be taken i n t o  considerat ion subsequently during the  evaluat ion of tkie work- 

hardening curve. A s  a s impl i f i ca t ion ,  t he re fo re ,  the average s t r a i n  rate € 

is being considered. 

= E / t  m 
Its r e l a t i v e  e r r o r  is  

with the absolute  e r r o r s  ’ V 

6; 

SE due t o  inaccurate  con t ro l ;  

of the average s t r a i n  r a t e ;  m 
R 

6c of s t r a i n  measurements, and 

6 t  of time. 

I n  t e s t s  with constant  drawing rate of the  drawbar, the s t r a i n  rate i n  

general  increases  by seve ra l  hundred percent during the t r a n s i t i o n  from e l a s t i c  

t o  e l a s t i c - p l a s t i c  deformation. 

ca l cu la t ion  performed here  only t o  es t imates  of t he  e r r o r  of the property ’ 

value. 

Deviations of t h i s  magnitude l e a d  i n  the  e r r o r  

The e r r o r  of t e n s i l e  values  determined i n  creep t e s t i n g  may be ca lcu la ted  

a l s o  by Eq. 1. If weight, c ros s  sec t ion  and time e r r q r s  a r e  ,,eglected: the 

following is v a l i d  for the accuracy of t ime-strain l i m i t s  

. . .  1. - . . -  

aula& 
The s t r a i n  e r r o r  modulus i-’&-j cannot be determined d i r e c t l y  from the  v a r i a t i o n  

with time of s t r a i n .  Therefore,  the  t o t a l  s t r a i n  and assoc ia ted  stress is  taken 

f o r  the reference time of the  t ime-s t ra in  l i m i t s  (1 hour, 10 hours,  100 hours,  

e t c . ,  f o r  example) from the c reep  curves[€ = E ( t ) l .  These p a i r s  of values  - /lo12 
y ie ld ,  together  with the  reference time as a parameter, s t r e s s - s t r a i n  curves from 

which the s t r a i n  e r r o r  modulus can be deterained. If t ime-strain l i m i t s  with 

2. 
e r r o r s  of th? s t r a i n  and time d i f fe rences  are introduced on which the deter-  
mination of is  based. Fur ther ,  i t  should be noted t h a t  the d i r e c t  e f f e c t  of 
the  s t r a i n  e r ro r  fa l s i f ies  the  t e n s i l e  stress i n  the  same sense as the  e r r o r  of 
the s t r a i n  ra te ,  which occurs as a r e s u l t  of the s t r a i n  e r ro r .  

Eq. I1 is equal ly  v a l i d  for the instantaneous s t r a i n  r a t e  i f  the  r e l a t i v e  



d i f f e r e n t  reference s t r a i n s  are given, then f o r  d i f f e r e n t  time parameters and 

temperatures the  modulus can be determined from the  s t r e s s - s t r a i n  cor re la t ion .  

The accuracy of the creep s t r eng th  is not  a f f e c t e d  by the  s t r a i n  e r ro r .  

temperature ir. ',Y- 

A l i g h t  metals B hea t  r e s i s t a n t  metals , C high-melting metals 
Mg A1 T i  Nimonic 90 D Nb T a  Mo W 

unalloyed o 4 o C s t e e l  v unalloyed c \ o ;I v 
a l loyed  o 6 o Cr-Mo-W-V s t ee l  a l loyed  4 ta v 

Figure 10. Temperature dependence of the' e r r o r  moduli 
f o r  -. 0.2' 

Error Moduli and Resul t ing S t r e s s  E r r o r ;  

Figure 10 presents  the  e r r o r  moduli o f  c e r t a i n  l i g h t  metals, hea t - r e s i s t an t  

materials and high-melting metals and a l l o y s  as a funct ion of temperature fo r  

the aOe2 l i m i t .  

w a s  used i n  the determination of values. 

The t o t a l  s t r a i n  assoc ia ted  with a prmanent  e longat ion of 0.2% 

The modulus of s t r a i n  e r r o r  is weakly temperature-dependent f o r  the  materials/l09 - 
invest igated.  

t o  approximately l/5. 
I n  general, it cannot be g r e a t e r  than 1 and on the average amounts 

The p a r t i a l  e r r o r  of CT due t o  the  inaccuracy of s t r a i n  0.2 
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measurements is thus  a t  the most equal t o  the r e l a t i v e  s t r a i n  e r r o r  ] 6 e / c  1 , 
without considerat ion of i ts  e f f e c t  by way of the s t r a i n  r a t e ,  but on the average 

i s  equal t o  1/5 I ~ E / E ~ .  
The e r r o r  modulus of kemperature i n  pa r t  r i s e s  s t rongly  with increasing 

temperatures and i n  some cases  a t t a i n s  values which a r e  c l e a r l y  above 10. The 

p a r t i a l  e r r o r  of the B l i m i t  due t o  temperature inaccuracy thus  may exceed , 

the r e l a t i v e  e r r o r  of temperature [6T/T 1 by more than an order of magnitude. 

The high values of the modulus o f  temperature e r r o r  occur not  only i n  the tem- 

perature  range of . large ao/ar, but  a l s o  with s u b s t a n t i a l l y  higher temp3ratures, 

s ince then the o/T r a t i o  becomes l e s s  than b / a T .  

of temperature is  approximately equal t o  3 .  The p a r t i a l  temperature e r r o r  of the 

B l i m i t  is thus three  t imes as high as the r e l a t i v e  e r r o r  of temperature. 

0.2 

The average e r r o r  modulus 

0.2 

Only a few values of the modulus of s t r a i n  r a t e  e r r o r  a r e  a v a i l a b l e  a t  t h i s  

t ime, they ind ica t e  t h a t  t h i s  modulus depmds c l e a r l y  on the s t r a i n  r a t e  and the 

temperature. A t  the customary s t r a i n  r a t e s  i n  the determination of y i e l d  poin ts  

the value of  1 is probably seldom exceeded; the  average is approximately l/5, as 

i n  the case of the s t r a i n  r a t e  modulus. 

A t  an average dependence of the y i e l d  point  of the s t r a i n ,  tempsrature 

and s t r a i n  r a t e ,  the r e l a t i v e  r e s u l t i n g  e r r o r  of 5 

est imate  by 

is giveii as a rough 0.2 

I f  the d r a w  r a t e  of the drawbar is cont ro l led  s o  t h a t  the s t r a i n  r a t e  is  

approximately constant ,  then with considerat ion of Eq. I1 

The e r r o r  moduli of y i e l d  poin ts  determined i n  t e n s i l e  t e s t i n g  a re  i n  

pa r t  s u b s t a n t i a l l y  l e s s  than those of the t ime-strain l i m i t s .  This f a c t  be- 

came e s p e c i a l l y  pronounced i n  the case of an AlCuMg aluminum a l loy .  

creasing reference t imes of the t ime-strain l i m i t s  the  e r r o r  modulus of . s t r a in  

increases  s t rongly  and i s  about 16 t imes as l a rge  a t  1000 hours than f o r  the 

aOa2 point i n  t e n s i l e  t e s t ing .  

for molybdenum. 

With in- 

A s  seen i n  Figure 11, the condi t ions are similar 



Figure 11. Error moduli o f , t h e  0.2 t ime-strain l i m i t  and creep 
s t r e n g t h  . 

I n  genera l ,  t he re fo re ,  the measuring accuracy of s t r a i n  i n  creep t e s t i n g  

c181 should be higher than i n  t e n s i l e  t e s t i n g  [lo] . It should be noted, how- 

ever ,  t h a t  i n  t e n s i l e  t e s t i n g  the s t r a i n  e r r o r  \ 6 c / c  / 
of s t r a i n  r a t e  and t h a t  thus  i n  the case of a c l e a r  dependence of the y i e l d  

poin ts  on s t r a i n  r a t e  an increased e f f e c t  of1 &/E f on the r e s u l t i n g  e r r o r  of 

the property value e x i s t s . ( s e e  Eqs.  11, I11 and IV). 

e n t e r s  i n t o  the e r r o r  

The e r r o r  modulus of temperature as a r u l e  a l s o  increases  with temperature 

and time f o r  the t ime-strain l i m i t  and creep s t r eng th ,  Figure 11, and for long 

periods of time c l e a r l y  exceeds the values  o f ' t e n s i l e  t e s t ing .  

The empir ica l ly  g r e a t  s c a t t e r  range of creep s t r e n g t h  values f o r  long 

periods of time is  therefore  i n  a l a rge  measure due t o  the ' inadequate  t e s t i n g  

techniques employed, i n  p a r t i c u l a r  due t o  the e r r o r  of temperature. 
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Discussion - /lo15 
D. Dengel, Ber l in :  Your l i t e r a t u r e  reference i n  the problem of suspension 

could c rea t e  the impression i n  the  auditorium, not  e n t i r e l y  co r rec t  i n  my 

opinion, t h a t  the  quest ion of suspension f o r  r e a l l y  p a e  t e n s i l e  t e s t i n g  has  

been completely solved. What does your specimen suspension look l i k e ?  

H. Feldmann, Aachen: The paper placed emphasis on the  f a c t  t h a t  the  

a b i l i t y  t o  funct ion of socket and pin j o i n t s  can be s u b s t a n t i a l l y  r e s t r i c t e d  by 

self- locking,  a t  the  ends of the  drawbar system. 

The c ross  sec t ion  of the t e n s i l e  specimens inves t iga ted  by the  authors  

was approximately 10 mm2 i n  the  gage length.  

signed f o r  a maximum load  of 1000 kp only. The force is  introduced i n  the draw- 

bar system by way of hardened s tee l  b a l l s  with a 3 mm radius .  

on which t h e  b a l l  s l i d e s  w a s  produced by pressing the  b a l l  i n t o  a drawbar. 

The t e s t i n g  apparatus  i s  thus  de- 

The cup surface 

The diameter of the  indenta t ion  is 3.2 mm. The shape and surface q u a l i t y  of the  

cup are s o  good t h a t  w i t h  add i t iona l  MoS2 l u b r i c a t i o n ,  the  bending stress pro- 

duced by f r i c t i o n  i n  the  gage length  of t he  specimen is  neg l ig ib ly  small.' 

R. Herold, A lbe r tv i l l e :  The material of the clamping heads is  Mo TZM f o r  

t es t s  a t  up t o  18000~. 
are used. To prevent t he  g a l l i n g  of j o i n t  th reads ,  the  t h r e L s  are costed with 

MgO powder. 

A t  h igher  temperature,  tantalum .al loys with-lO% W 

H. Feldmann: The material of t he  clamping heads is  Mo TZM'for t e s t s  up 

t o  18oo0c, at  higher  temperatures,  tantalum a l l o y  T a  10 W is  used. The d r a w -  

bars  i n  the  furnace are made of TZM molybdenum. Clamping heads are threaded 

with the drawbars. Gal l ing  of the j o i n t  th reads  is prevented by coat ing the 

threads with MgO powder. 

P 
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